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End Patterns of Self-Avoiding Walks 

N e a l  M a d r a s  1 

Received May 31, 1988 

Consider a fixed "end pattern" (a short self-avoiding walk) that can occur as the 
first few steps of an arbitrarily long self-avoiding walk on 77 d. It is a difficult 
open problem to show that as N-- ,  o% the fraction of N-step self-avoiding walks 
beginning with this pattern converges. It is shown that as N ~ o% this fraction is 
bounded away from zero, and that the ratio of the fractions for N and N + 2 
converges to one. Similar results are obtained when patterns are specified at 
both ends, and also when the endpoints are fixed. 

KEY WORDS: Self-avoiding walk; self-avoiding polygon; pattern; reptation 
algorithm. 

1. I N T R O D U C T I O N  

An N-step self-avoiding walk (SAW) is an ordered sequence of distinct 
points (coo ..... CON) of the d-dimensional integer lattice 7/J (d>~ 2) such that 
consecutive points are unit distance apart. Let SN be the set of N-step 
SAWs having COo = 0, and let CN denote JSNI, the cardinality of S~. For  a 
fixed nonzero point z e Z ~, let CN(Z) be the cardinality of 

SN(Z ) ]= {COESN] CON=Z} 

Hammersley (1'2) proved that there exists a constant/~ > 1 such that 

lim (CN)I/N=]~ (1.1) 
N ~  

and that for each fixed nonzero z = (z(l),..., z (a)) ~ Z d, 

lira [Cu(Z)]I/N=t~ (1.2) 
N ~ o o  
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[In (1.2), N is restricted to be of the same parity as 
Lzl :=  Iz~)l +lz~2)l + .- .  + Iz~)l. This  will be implici t ly  a d o p t e d  as a 
convention for the remainder of this paper. l  It  is also known (3) that 
/~N<~CN<~IxNeO(N~/2), and that (2) for I z l = l ,  CN(Z)<~NI IN. It is believed, 
however, that asymptotically 

r  7-1 and CN(Z)~12NNc~sing 2 

(for z fixed and nonzero) as N--* ~ .  Here 7 and ~sing are critical exponents 
which (unlike #) are believed to be universal among all lattices of a given 
dimension d. (Slade (8) has proven that Y = 1 in high dimensions.) 

A pattern is a (short) SAW that can occur as part  of a longer SAW. 
Formally, a pattern P can be any SAW P = (Po ..... p~). A pattern P is said 
to occur at the j t h  step of the SAW CO = (COo,..., CON) if there exists a vector 
v~77 a such that COj+k=p~+v for k = 0  ..... n. Kesten (4) proved that if a 
pattern can occur several times on a long SAW, then it must occur quite 
often on most SAWs. More precisely, let ZN(m, P) be the number of CO in 
SN for which P occurs at most  at m different steps. Then there exists an 
e > 0 such that 

l imsup(ZN(~N'P) )  oo k e N (1.3) 

A pattern P = (Po,---, P~) is said to occur at the front (respectively, tail) 
of the SAW co = (coo,-.-, CON) if P occurs at the 0th [respectively, ( N -  n)th] 
step of co. For  patterns P and R, and for z e 7/a, define 

FN(P) = {CO ~ SN: P occurs at the front of co} 

TN(R) = { co ~ SN: R occurs at the tail of co } 

S N ( P  , R )  = FN(P  ) ~ TN(R) 

eN(P ) = IFN(P)I 

cN(P, R)= ISN(P, R)I 

CN(Z; P)  = ISN(Z) ~ FN(P)I  

CN(Z; P, R) = [Su(z) c~ SN(P , R)[ 

Thus, cN(P)/c~v is the probability that an N-step SAW (chosen uniformly at 
random) begins with the pattern P. It  is conjectured that limN~ oo eN(P)/cN 
exists for every pattern P; if true, this would define a probability 
distribution for the "SAW of infinite length." (Lawler ~5) has proven this 
conjecture in high dimensions, using the methods of Slade. (8)) The present 
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results are somewhat weaker. In Section 2, it is proven that if P is a pattern 
which can occur at the front of arbitrarily long SAWs [-i.e., if CN(P ) > 0 for 
all sufficiently large N], then 

lim inf cN'P" ( ) > 0 (1.4) 
N ---, oo C N 

Analogous results are proven for CN(P , R),  CN(Z; P), and c~(z;  P, R )  (the 
result is weaker for the latter two cases when [z] > 1; see Theorems 2.2 and 
2.3). Section 3 extends the following results of Kesten(4): 

lim CN+2 =it2 (1.5) 
N ~ ~ C N 

l i m  CN+ 2(Z) - - I t  2 (1.6) 
N - ~  cN(z) 

Specifically, if CN(P ) > 0 for all large N, then 

l ira CN+ 2(P)=It 2 (1.7) 
N~oO CN(P ) 

with analogous results for CN(P , R), CN(Z; P),  and CN(2; P ,  R ) .  Section 4 
gives a simple application of the results to the analysis of a particular 
Monte Carlo algorithm for SAWs. 

These results are obviously weaker than one would like, yet proving 
the existence of the limit in (1.4) is a notoriously difficult problem, 
analogous to the existence of the thermodynamic limit for states in the 
absence of either monotonicity properties or convergent expansions (the 
latter is the key tool in refs. 5 and 8). This contrasts with the easier 
thermodynamic limit of the free energy [analogous to (1.1) for the SAW]. 
Despite their apparent simplicity, many basic questions about SAWs 
remain unanswered. For example, let P =  (Po ..... Pn) be a pattern with 
p~l) ~> pll)for  0 ~< i <  n. Is it true that at least half of the SAWs in F N ( P  ) (for 
N > n )  have on(l)>- ,~(1)9 Such a "reflection principle" would be a most N - v l / J n  " 

useful result, but nobody can prove it. One also encounters problems of 
parity on the y_a lattice; for example, it is an open question whether one 
can improve (1.5) to l imu~ ~ C u + 1/C u --- It. Similarly, although ON+ 2 >>" C N is 
elementary, it is not at all easy to prove cu+ 1 >~ CN for all N. This last result 
has been obtained only very recently. (7) 

To close this section, I set some additional terminology and notation. 
Let UN be the number of Nstep SAWs with 09o=0 and t~Ou[ ---- 1, and let 
r/N+ 1 be the number of such SAWs such that ~o o is lexicographically 
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smaller than  every other  point  of the SAW. Alternatively, (2) t/N is the 
number  of oriented N-step self-avoiding polygons (oriented simple closed 
curves of length N passing th rough  N points  of Z d, without  specified 
start ing point) ,  modu lo  translation.  Thus,  one has (2'4) r/U+l = UN/(N+ 1), 
and g d, wi thout  specified start ing point) ,  modu lo  translation.  Thus,  one 
has (2'4) uN = 2dCN(Z) if [z[ = 1. A cube is any set of the form 

{x~7/d:a(O<~xr176 for all i =  1,..., d} 

where a~ a (d), and b are integers, with b > 0. A front (respectively, tail) 
pa t tern  P is called proper if there exist arbi trar i ly long SAWs with P 
occurring at  the front (respectively, tail). 

2. O C C U R R E N C E  OF END P A T T E R N S  

In this section I prove  (1.4) and its extensions, which say in effect that  
if certain end pat terns  can occur  on long walks, then the probabi l i ty  that  
they occur  is bounded  away  f rom zero as N ~  oe. [-Here I refer to the 
uniform probabi l i ty  measures  on SN or on SN(Z).] 

T h e o r e m  2.1.  Let P - -  (Po ..... p~) be a p roper  front pat tern,  and let 
R = (ro,..., r,,) be a p roper  tail pat tern.  Then  

and 

lim inf cN'P" ( ] > 0 (2.1) 
N ~ o o  C N 

lira infCN, P,f R) > 0  (2.2) 
N ~  oo C N 

Proof. Since CN(P ) ~ CN(P , R), it would suffice to prove  the latter 
assertion. However ,  for exposi tory  purposes,  I will prove  both,  since they 
require the same basic ideas, and  the former  has fewer complicat ions.  

Since P is a p roper  front pat tern,  there exist m > mo > n and a SAW 
coP= (co~ ..... co~) such that  P occurs at the front of co p, 

co[ ~ {x ~ y d: 1 <~ x (i), i = 1 ..... d} 

col ~ {x e ~d: x(~ = 0} 

for j =  0,..., mo 

for j = m o +  l,...,m 

and coe m = 0. Let  D be the cube {x e 7/d: 0 ~< x (~ ~< m, i = 1 ..... d}. Observe  
D that  c% e e D for each i = 0,..., m. Let  q = (m + 1 ) d _  1. Let cod = (coo ..... cog) 

D =  0, COO D is ano ther  extreme point  of D, and the be a SAW such that  coq 
remaining q - 1 points  of co D are precisely the remaining q - 1 points  of D. 
Such a walk "exactly fills D" and its existence is p roven  in ref. 4, L e m m a  3. 
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Observe that for each co ~ FN(COD), if we define 

)'co~ for i =  0,..., m 

(-Oi_q+ m for i = m +  l , . . . , N - m + q  

then co*= (coo . . . . .  CON--re+q) is a SAW, and it has COp as a front pattern. 
This transformation induces a map from Fu(o9 D) to F N _  m + q(09 P) which is 
clearly one-to-one. Also, FN(o9 p) c FN(P), so it follows that 

CN(P ) >/CN(09 P) >! CN +q_m(O.) D) 

Thus, (2.1) will be proven once we prove 

lira inf c N + q-'~(a)D) > 0 
N~,x? C N 

(2.3) 

By (1.3) and (1.1), 

lim sup [Zi(0, o)~ 1/i< # 

so there exist I and a > 0 such that 

x,(O, co~ i for all i>~I (2.4) 

Fix an even integer k ~> L 
Let amj be the set of SAWs co ~ S m such that co D occurs at t h e j t h  step 

of co, and let U,~,k--- k Us=o amj. Then 

JSN_m+q+k\UN_m+q+k,k  I ~ ~k(O ' COO) CN_m+q ~ ]~k(1 __ ~)k CN_m+q 

Therefore 

CN_m+q+k __ CN m+qjs __~)k ~ I U N m+q+k,kl 

k 

j=0  
k 

E Cj IFN_m+q(COD)t Ck_ j 
j=O 

Division by CN# ~ gives 

CN--m+q+k 

#%N 
CjCk--j CN-- 

j 0 CIV 
(2.5) 

822/53/3-4-10 
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Since k and q - m  are both even (and fixed), we have, from (1.5), 

lim CN--m+q+k CN m 
~tkCN . . ~ _ # q - - m _  l i m  + q  

N c~ N --* c~ C N 

So, as N ~  0% the left side of (2.5) converges to a strictly positive number. 
Thus, (2.3) follows, and (2.1) is proven. 

The proof of (2.2) requires some extra details, but the ideas are 
similar. In addition to the above definitions, there exist m ' > m ~ ,  with 
m~ + n' < m', and a SAW coR in Sin, such that R occurs at the tail of coR, 

col E {x ~ ~a: 1 ~< x (~ i = 1 ..... d} 

co7 {x e = 0} 

p m p for j - -  mo,... , 

for j =  0,..., m~-- 1 

and coo R = 0. Let D' be the cube { x e  y_a: 0 <~x ~~ <~m', i= 1,..., d}, and let 
, D' another coD'= (cog', .... C0~') be a SAW that exactly fills D' with co~ = 0, (9r 

extreme point of D' and co D' exactly fills D' [and so q ' =  (m '+  1) a -  1]. 
The roles of coR, D', and co D  ̀will be exactly analogous to the roles of coP, 
D, and COD. 

We also need the SAW chR= "R "R (COO,'", COrn'+ 1) obtained by "adding" a 
single edge to coR, as follows. Let 

fcof  for i =  0,..., m~)-- 1 
ch~ /3~/t (co~_ 1 + (1, 0, 0,..., 0) for i=mo,..., +1 

It is not hard to see that (5 R is a SAW, and that it is contained in D', 
begins at 0, and has R as a tail pattern. 

As in (2.4), there exist I '  and ~ '>  0 such that 

Xi(0, COD') ,,< [(1 -- #)  ~J i for all i>~I' (2.6) 

Fix k~>max{/, I '} such that k is even and 

(1 - e ) k <  1/4 and (1 --e')k< 1/4 (2.7) 

Let vu, k be the number of SAWs in S N in which coo occurs at none of the 
first k steps and co ~ occurs at none of the last k steps. Then 

k k 

E E C jCN- - j - - J  '((J)D' coD') Cj, ~ C N - -  VN, k 
j - - 0  j ' = 0  

C N --  Zk(O,  (I9 D) C N _  k - -  C N _ k Z k ( O  , (D D') 

>- ON-- 2CN--k#~'/4 
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[using (2.4), (2.6), and (2.7)], and therefore 

max cu ,(coD, coD')>ICN 1 Cj 
O <~ t <~ 2k j 

Thus, (2.2) will be proven if it can be shown that, for all t/> 0, 

CN t(COD, coD') ~ CN_q_q, +m+m,(p  ' R )  (2.8) 

To prove (2.8), I will construct a one-to-one mapping from 
SN t(CO D, COD') to  SN_q_q,+m+m,(P , R). For t = 0  or 1, this is easy: given a 
SAW in SN_,(~O D, COD'), replace the front pattern co D by coe and replace the 
tail pattern coD, by car or e3 R, according to whether t is 0 or 1. For  t >~ 2, let 
l be the integer satisfying t = 21 if t is even and t = 2 l+  1 if t is odd. For  a 
SAW co in SN_I(co D, coD'), let u=min{ i :  co}l)>~co)l~ for all j=0, . . . ,  N - - t } .  
To define the mapping, consider three cases: 

Case I: q < < , u < N - t - q ' :  Replace the edge from cou to cou+l by the 
(2 l+ 1)-step SAW from cou to cou+ (/, 0, 0,..., 0) to cou+l+(l ,  0 ,0  ..... 0) to 
co,+ 1. Then replace the front pattern co D by cop and replace the tail pattern 
coD, by car or o3 R, according to whether t is even or odd. 

Case II: u >~ N - t -  q: Replace co D by coe and replace 09 D' by the 
pattern consisting of the t-step SAW from (0, 0 ..... 0) to (t, 0,..., 0) followed 
by caR. 

Case Ill: u<q:  Similar to case II, but with the t-step segment 
immediately following co e. 

The above three cases define the desired one-to-one mapping, so (2.8) 
is proven and (2.2) follows. 

T h o o r e m  2.2. Fix a point z ~ Z d with Izl = 1. Let P = (P0 ..... p , )  be 
a front pattern and let R=(ro,... ,r~,) be a tail pattern such that 
CN(Z; P, R) > 0 for all sufficiently large (odd) N. Then 

lira inf c#(z; P' R) > 0 (2.9) 
N ~  ~o c ~ ( z )  
N o d d  

Proof. Without loss of generality, Po = 0 and rn, = z. Let P'  be the 
pattern (ro ..... r,,, Po,---, P,). Then P'  can occur many times on long SAWs, 
so, for some g > O, 

lim sup [ZN(eN, p,)]l/N < kt (2,10) 
N ~ o c  
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by (1.3) and (1.1). Let Hu be the set of CO~SN(Z) such that P'  occurs at 
least eN times on co; then (2.10), (1.1), and (1.2) imply [HN[ >1 [CN(Z)I/2 for 
sufficiently large N. 

If c o~ U w and P' occurs at the j th  step of co, then (coj+,,+l, 
c0j+n'+: ..... CON, COO,'", COj+,') is a SAW; if we translate this so that its initial 
point is the origin, we obtain a SAW co* in Sw(z ) c~ SN(P, R). In words, co* 
is obtained by adding the bond (CON, COo) to CO, forming an oriented self- 
avoiding polygon, and then removing the (r~,, Po) edge from an occurrence 
of P' (followed by a translation). Given co*, there are at most N possible co 
that it could have come from (the polygon is uniquely determined, but each 
such oriented polygon could come from N +  1 different SAWs with 
[C0N--C00[ = 1). Thus, each obtained Co*~ Szv(z)~SN(P, R) comes from at 
most N different Co's in H N. Conversely, each co ~ H N gives rise to at least 
eN different Co*'s in SN(Z) n SN(P, R). Therefore, NCN(Z; P, R) >~ gN ][IN[. 
Combining this with ]HN[ >~ ICN(Z)[/2 (for large N) proves (2.9). 

T h o o r e m  2.3. Fix a nonzero point z~ 77 a. Let P =  (Po,.-., Pn) be a 
proper front pattern and let R = (r 0 ..... r,,) be a proper tail pattern such 
that CN(Z; P, R) > 0 for all sufficiently large N (of the same parity as [z[). 
Then, if tz[ is odd, 

lim inf CN(Z; P, R) > 0 (2.1 1 ) 
N ~ c o  U N 
N odd 

and if Izl is even, (2.11) holds when N is replaced by N +  1 in the 
numerator. 

ProoL To get a handle on the geometry, consider an arbitrary SAW 
05 in Sk(z) n Sk(P, R) for some k. Let b be large enough so that ]05il < b for 
all O<~i<~n and N-n'<~i<<.N. Let D be the cube {x:tx(~ for all 
i =  1,...,d}. Then there exist two SAWs CoP=(CO~ .... COem) and 
CO- = (Cog,..., , COm') having no vertices in common, contained entirely in D, 

P and Coo R as extreme points of D, and satisfying Co~ = 05~ for having COrn 
O<<.i<~m and COiR=05N+i_m , for m'-n'<~i<~m'. We can also require that 

D ~" and such that COo COo.= (Co~ ..... COD) is a SAW with Co~ =COo R, Coq =COrn, 
exactly fills D (ref. 4, Lemma 3). 

Put  y =  (1, 0,..., 0); let Co~Su(y)c'~T~v(Co~ [If  Su(y)C~TN(CO ~ is 
empty, put y = ( -  1, 0 ..... 0) instead.] Define a SAW Co* obtained from 09 
by removing the tail pattern coo and replacing it with COR at the tail and Cop 
and (y, 0) at the front; explicitly, Co* ~- (COP ..... COrn,P COOq"(COm--Y)P ..... 

COm')" Then it is easy to see that Co* is an Mstep  COn q + (CO - y) ,  , o f  ..... 
SAW, where M = M ( N ) = N - q + m + m ' + I ,  and that CO*~SM(z)~ 
SM(P , R). (Therefore, M has the same parity as Izl.) Since the transfor- 
mation from co to co* is one-to-one, it follows that ISN(y)~ TN(o)D)I 
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cM(z; P, R). So, when [z[ is odd, this inequality combines with Theorem 2.2 
and (1.6) to give 

lim inf cM(z; P, R) >1 . . . .  [ [Su(y ) n TN(OOD)t U._~N ~ ~lm mI �9 . . . . .  > 0 
m~ov bl M N ~  \ 2deN(y) uMJ 

The case where [z[ is even is exactly analogous. 

C o r o l l a r y  2.4. Fix y, z~;7 d with [ y l = l .  Then there exists a 
constant A = A(z) such that for all sufficiently large odd N, 

eN(y ) ~ MeN(Z ) if [Z[ is odd 

Cu(y) ~ MeN+ 1(z) if [zl is even 

We remark that if the reverse inequalities also hold (for different A), 
then Theorem 2.2 holds for every fixed z. 

3. R A T I O  L I M I T  T H E O R E M S  

In this section I prove a theorem which extends the known results (4~ 
(1.5) and (1.6). (The rates in the theorem are exactly the same as those in 
ref. 4.) 

T h e o r e m  3.1. (i) Let P =  (P0,..., P~) be a proper front pattern, and 
let R = (ro .... rn,) be a proper tail pattern. Then there exist constants A 1 and 
A 2 (depending on P and R) such that 

and 

eN+ 2(p) ~2 ~AIN-1/3 (3.1) 
eN(P) 

CN+2(P , R) ~2 
CN(P , R) ~AzN-~/3 (3.2) 

for all sufficiently large N. 

(ii) In addition to the above hypotheses, fix a nonzero z eY_ a. If 
eN(Z; P, R) > 0 for all sufficiently large N (of the same parity as Iz[ ), then 
there exist constants A3, A4, As, and A 6 (depending on z, P, and R) such 
that 

_A3N-I/3 <~ CN+2(Z; P) ~2 ~ A4N-1/4 (3.3) 
CN(Z; P) 

for all sufficiently large N (of the same parity as Izl ). 

- A s N  1/3<~ cN+2(Z;P'R) #2<~A6 N 1/4 (3.4) 
eN(Z; P, R) 
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Remark. (3.1) is a consequence of (3.2), since 

~+~(e) ~ = v (~N+2(P_,_R) ) eN(e, R) 
cN(e) "7 \ c~(P, R) ~2 c~(P) 

~max CN+z(P' .R) #2 
R CN(P , R)  

where R ranges over all n'-step proper tail patterns and N is large. 
Similarly, (3.3) follows from (3.4). 

Before I prove (3.2) and (3.4), I prove two lemrnas which generalize 
the inequality 

CM + N~ (1/2d) CN~ M (3.5) 

which is Lemma 1 of ref. 4. 

L e m m a  3.2. For P and R as in Theorem 3.1(i), there exists a 
constant 3 - 5(P, R) > 0 such that 

CN+ M(P, R) >/(~CN~]M ~ ~CN(P , R) riM (3.6) 

CN + M(P, R)<<. 6 -  lcN(P, R) cM (3.7) 

for sufficiently large N and all M. 

ProoL (3.6) follows from (3.5) and Theorem 2.1 if we put 
6 = 1/2 lim infN ~ ~ CN(P, R)/CN. (3.7) follows from the inequalities 

CN+ M(P, R) ~ CN+ M ~ CNCM ~ 6 -- ICN(P , R) cM 

komma 3.3. For P, R, and z as in Theorem 3.1(ii), 

CN + M(Z; P, R) >~ (1/2d) CN(Z; P, R) rim (3.8) 

for all M and sufficiently large N (of correct parity). 

ProoL Choose A large enough so that for any e) e SN(Z) c~ S N ( P  , R) ,  

one has 

coje {x e Zd: Ix(i) I < A, i= 1 ..... d} 

for all 0 ~<j ~< n and N - n '  ~ j  ~< N (that is, the end patterns must be con- 
tained in the above cube). Now, given o)~SN(z )~S:v (P ,R)  for some 
N > ( 2 A  + 1) a, choose the integer ~ so that e)}t)= r for some ie  {1,..., d} 
and s o m e j e  {0 ..... N}, and so that [~l is as large as possible. (Observe that 
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since N >  (2A + 1) d, we must have Igl > A  and n < j < N - n ' . )  Let ko be the 
subscript of the lexicographically largest point of co in the hyperplane 
x ~i) = r Now proceed as in the proof of Lemma 1 of ref. 4, attaching an M- 
step self-avoiding polygon to co at cok0 (the points of the polygon are all on 
the side of the hyperplane x ( ~  ~ that contains no points of co). The 
resulting SAW, co*, is in SN+M(Z)C~ S N + M ( P ,  R) .  Every ( N + M ) - s t e p  co* 
obtained in this way is different, because there can be only one cube 
centered at the origin which contains exactly N +  1 points of co* (those 
N +  1 points give co E SN, and the remaining M points give the polygon). 
Since the polygon can be chosen in at least rlM/2d ways, and co in 
CN(Z; P, R) ways, (3.8) is proven. 

I now return to the proof of (3.2) and (3.4). Much of the proof is the 
same as the proofs of (1.5) and (1.1) in ref. 4. Instead of reproducing the 
details, I refer the reader to ref. 4 and restrict myself here to describing the 
changes that must be made. 

Proof of Theorem 3.1. Define r r R)=CN+2(P , R ) /CN(P  , R) 
and r First we require the 
following result: There exist constants B~ and B2 such that 

fb~ + 2 >~ ~Ju- BJN (3.9) 

This is the exact analog of Theorem 2 of ref. 4. The proof is essentially iden- 
tical; we must, however, prohibit any changes affecting the end patterns P 
and R (see Kesten's remark at the end of ref. 4, Section 3). Everything else 
in the proof is the same, until the final line, where we require 
l i m i n f u _ ~  ~b~>0. For j =  1, ~b~v~> [CN+2(P , R) /CN+2] CN+2/CN, SO the 
result follows from Theorem 2.1 and (1.5); for j =  2, the result follows from 
(3.8) because r/2 = d. 

Now I proceed to Theorem 4 of ref. 4. Define Per by ~b~v=/~2+ 
piN N-~/3. The upper bound on pl u uses (3.7) (for large N) instead of 
Eq. (3.10) of ref. 4: the 6-x constant is unimportant (it can be absorbed, for 
example, by increasing ~ 1 ). 

For the upper bound on P~v, I use CN(Z)>~ K u  N for some constant K 
(from Corollary 2.4), as well as (3.5) and (1.1) of ref. 4: 

CN+2M(Z; P, R) <<. CN+ZM 
CN(Z ; P, R) K u  N 

.~. 1 2M -.~.,u exp[czl(N+ 2M) ~/2] exp[o~4(N+ 1) m ]  

~</1TM exp[~(N + 2M) m ] 
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for an appropriate ~>0 .  Then Kesten's argument, with m =  
[(p%./2B2) N2/33, gives 

N l/3p~vlog[1 + (p2/2#2) N -1/3] ~< 2Bz~N-1/211 + (pZ/2B2) N 1/331/2 

from which we deduce p2NN-1/3= O(N 1/4). 
The proof of the lower bound for p~ is the same as Kesten's, except 

that CN/CN- 2,,,' >~ tt2m'/2d is replaced by CN(P, R)/cN_ 2m.(P, R) >>, 6th,,, [from 
(3.6)] for j =  1, and the analogous result from (3.8) for j =  2. 

4. A N  E X A M P L E  

As an application, I discuss the nonergodicity of the "reptation" 
Monte Carlo algorithm for SAWs (see references in ref. 6, Section 3). Also 
known as the "slithering snake," this algorithm starts with a (given) SAW 
co E~ in SN and generates a random sequence of SAWs co ElI, co[2],.., in SN 
(here, each element of SN should be viewed as an equivalence class of 
SAWs modulo translation). Given co [i], the algorithm randomly adds one 
step to one end of the SAW and simultaneously deletes a step from the 
other end; if the result is a SAW, then it is co [i+ 1] (if it is not a SAW, we 

I 
e, 

P 

R 
Fig. 1. An example of a proper front pattern P and a proper tail pattern R. 
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put  COEi+IJ=COEil). Two SAWs coA and cob are said to be in the same 
ergodic class if the a lgor i thm can t ransform COA into coB: i.e., if there exists a 
finite sequence coA _ COt01, COEI~ ..... COEkl =-- COB of SAWs which is a possible 
realization of the algori thm. The SAW coA is said to be f r o z e n  if it is the 
only SAW in its ergodic class. 

The purpose  of such a Mon te  Car lo  a lgor i thm is to generate a 
representat ive sample of all SAWs of fixed length, so the degree to which 
this can be done  can be par t ly  measured  by du, the size of the largest 
ergodic class, relative to cN. In  2~ 2, consider the pat terns  P and R shown in 
Fig. 1. These are p roper  end patterns,  but  each is a "cul de sac": no step 
can be added to either end of a SAW in SN(P , R) ,  so every SAW in 
SN(P , R )  is frozen. Therefore,  Theo rem 2.1 implies that  for some e > 0 and 
for sufficiently large N, one has du<~ (1--•) e N, It  is known  (6) that  a lower 
bound  on dN is , m  ~2N, SO if one assumes the scaling relat ion CN ~ ]ANN e 1, 
then 

O(N-(e- 1)/2) ~ dN/e N <~ 1 -- e (4.1) 

for large N. This would hold for all d imensions d~> 2, since a cul de sac can 
be constructed in any dimension. It would be mos t  interesting to know 
which inequali ty in (4.1) is sharp  (if either). 
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