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End Patterns of Self-Avoiding Walks

Neal Madras'
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Consider a fixed “end pattern™ (a short self-avoiding walk) that can occur as the
first few steps of an arbitrarily long self-avoiding walk on Z% It is a difficult
open problem to show that as N — oo, the fraction of N-step self-avoiding walks
beginning with this pattern converges. It is shown that as N — oo, this fraction is
bounded away from zero, and that the ratio of the fractions for N and N+2
converges to one. Similar results are obtained when patterns are specified at
both ends, and also when the endpoints are fixed.

KEY WORDS: Self-avoiding walk; self-avoiding polygon; pattern; reptation
algorithm.

1. INTRODUCTION

An N-step self-avoiding walk (SAW) is an ordered sequence of distinct
points (w,.., @y) of the d-dimensional integer lattice Z¢ (d>2) such that
consecutive points are unit distance apart. Let S, be the set of N-step
SAWs having w,=0, and let ¢, denote |S,/, the cardinality of S,. For a
fixed nonzero point z € Z% let cy(z) be the cardinality of

Spz)i={weSyoy=2z}

Hammersley"?) proved that there exists a constant y > 1 such that
lim (cy)™¥=pu (L.1)
N—>

and that for each fixed nonzero z = (z'V,.., z¥) e 77,

Jim Len(2)]" =p (1.2)
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[In (1.2), N is restricted to be of the same parity as
iz = 1z + 2P + --- + 29|, This will be implicitly adopted as a
convention for the remainder of this paper.] It is also known®® that
WV <en<pVe®™™ and that® for |zl =1, cy(z) < Nu¥. It is believed,
however, that asymptotically

e u¥NT ! and cp(z)  p Nesine =2

(for z fixed and nonzero) as N — co. Here y and «g,, are critical exponents
which (unlike u) are believed to be universal among all lattices of a given
dimension d. (Slade® has proven that y=1 in high dimensions.)

A pattern is a (short) SAW that can occur as part of a longer SAW.
~ Formally, a pattern P can be any SAW P =(py,.., p,). A pattern P is said
to occur at the jth step of the SAW = (w,,..., wy) if there exists a vector
veZ? such that w;,,=p,+v for k=0,.,n Kesten® proved that if a
pattern can occur several times on a long SAW, then it must occur quite
often on most SAWs, More precisely, let y(m, P) be the number of w in
Sy for which P occurs at most at m different steps. Then there exists an
£>0 such that

N 1/N
lim sup (11!(8—5)> <1 (13)

N> o Cn

A pattern P = (p,,.., p,) is said to occur at the front (respectively, tail)
of the SAW @ = (wy,..., @) if P occurs at the Oth [respectively, (N —#n)th]
step of w. For patterns P and R, and for ze 7, define

Fy(P)= {we Sy: Poccurs at the front of w}
Tn(R)={we Sy: Roccurs at the tail of w}
Sn(P, R)=Fn(P)n Ty(R)
cn(P)=|Fn(P)|
cy(P, R)=|Sy(P, R)|
cwnlz; P)=1Sn(z) N Fy(P)]
cylz; P, R)=[Sy(z) " Sy(P, R)|
Thus, ¢,(P)/cy is the probability that an N-step SAW (chosen uniformly at
random) begins with the pattern P. It is conjectured that lim , _, ., c,(P)/cy
exists for every pattern P; if true, this would define a probability

distribution for the “SAW of infinite length.” (Lawler® has proven this
conjecture in high dimensions, using the methods of Slade.®) The present
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results are somewhat weaker. In Section 2, it is proven that if P is a pattern
which can occur at the front of arbitrarily long SAWs [i.e., if ¢cy(P) >0 for
all sufficiently large N], then

P
lim inf cntP)

N — Cn

>0 (1.4)

Analogous results are proven for ¢y(P, R), cylz; P), and cn{(z; P, R) (the
result is weaker for the latter two cases when |z| > 1; see Theorems 2.2 and
2.3). Section 3 extends the following results of Kesten:

Jm Sr=w 1.9
fim Sx+2)_ o (1.6)

Now  Cp(2)

Specifically, if c¢y(P)> 0 for all large N, then

fim 2P _ o (1.7)

N— o CN(P)
with analogous results for ¢,(P, R), cp(z; P), and cp{z; P, R). Section 4
gives a simple application of the results to the analysis of a particular
Monte Carlo algorithm for SAWs.

These results are obviously weaker than one would like, yet proving
the existence of the limit in (1.4) is a notoriously difficult problem,
analogous to the existence of the thermodynamic limit for states in the
absence of either monotonicity properties or convergent expansions (the
latter is the key tool in refs. 5 and 8). This contrasts with the easier
thermodynamic limit of the free energy [analogous to (1.1) for the SAW].
Despite their apparent simplicity, many basic questions about SAWSs
remain unanswered. For example, let P=(p,,.., p,) be a pattern with
pV = pW for 0 <i<n. Is it true that at least half of the SAWs in F,(P) (for
N>n) have o{)> p? Such a “reflection principle” would be a most
useful result, but nobody can prove it. One also encounters problems of
parity on the Z¢ lattice; for example, it is an open question whether one
can improve (1.5) to limy _, ., ¢y, /¢y = p. Similarly, although ¢, , = cy is
elementary, it is not at all easy to prove ¢y, , = ¢ for all N. This last result
has been obtained only very recently.”

To close this section, I set some additional terminology and notation.
Let uy be the number of N step SAWs with w,=0 and |w,| =1, and let
fx,1 be the number of such SAWs such that o, is lexicographically



692 Madras

smaller than every other point of the SAW. Alternatively,"” #, is the
number of oriented N-step self-avoiding polygons (oriented simple closed
curves of length N passing through N points of Z9 without specified
starting point), modulo translation. Thus, one has®® #,, = uy/(N+1),
and Z¢, without specified starting point), modulo translation. Thus, one
has®* uy =2dc(z) if |z] = 1. A cube is any set of the form

{xeZ%a"<xP<a"+b forall i=1,.,d}

where a'),.., ), and b are integers, with 5> 0. A front (respectively, tail)
pattern P is called proper if there exist arbitrarily long SAWs with P
occurring at the front (respectively, tail).

2. OCCURRENCE OF END PATTERNS

In this section I prove (1.4) and its extensions, which say in effect that
if certain end patterns can occur on long walks, then the probability that
they occur is bounded away from zero as N — co. [Here I refer to the
uniform probability measures on S, or on Sy(z).]

Theorem 2.1. Let P={(p,,..., p,) be a proper front pattern, and let
R=(ry,.., 1) be a proper tail pattern. Then

tim inf 2 S o 2.1)
N = Cn
and
. cdP R
lim inf X2 R g (22)
N> w CN

Proof. Since cy(P)=cn(P, R), it would suffice to prove the latter
assertion. However, for expository purposes, I will prove both, since they
require the same basic ideas, and the former has fewer complications.

Since P is a proper front pattern, there exist m>my>n and a SAW
w”=(wf,.., %) such that P occurs at the front of w”,

ofe{xez1<xV,i=1,.,d} for j=0,.., m,
wfe{xez4xV =0} for j=mo+1,.,m

and w/ =0. Let D be the cube {xeZ%0<x<m,i=1,..,d}. Observe
that w; e D for each i=0,.., m. Let ¢=(m + 1)~ 1. Let 0” = (0§ .., ©?)
be a SAW such that w? =0, wf is another extreme point of D, and the
remaining ¢ — 1 points of w” are precisely the remaining ¢ — 1 points of D.
Such a walk “exactly fills D” and its existence is proven in ref. 4, Lemma 3.
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Observe that for each w e Fy(w?), if we define

. fof for i=0,.,m
wf=

w for i=m+1,.,N—-m+gq

i—g+m
then w* = (wg,.. »§_,.,) 15 a SAW, and it has »” as a front pattern.
This transformation induces a map from Fy(w?”) to Fy_,, . (©”) which is
clearly one-to-one. Also, Fn(w®) < Fo(P), so it follows that

cn(P)zepo) 2 CN+q\m(wD)

Thus, (2.1} will be proven once we prove

D
fim inf S2ra=m( @) g (2.3)
Nox CN

By (1.3) and (1.1),

lim sup [1,(0, @”)]" < p

so there exist 7 and ¢ > 0 such that
10, 0?)<[(1—¢)p]* forall i=T1 (2.4)
Fix an even integer k> L.
Let 0, be the set of SAWs we S, such that »” occurs at the jth step
of w, and let U,,, = (J%_,g,,. Then
ISN4m+q+k\UN—m+q+k,k| SXI((O’ wD) CN‘m+qs.uk(1 —g)k cN——m+q
Therefore

k
CNmtgrk—CN_myght (1 —g)' < UN it g+ k]

k

< 2 IJN—m+q+k,j|
k
3

¢ {FN—m+q(wD)‘ Cp—j

Division by c,u” gives

cN—'Z+q+k_(1_8)kCN~m+q<<§ cjckk—j) CN—-m-\‘—q((‘OD) (25)
Hey N j=0 # Cw

822/53/3-4-10
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Since k and g — m are both even (and fixed), we have, from (1.5),

: CN_m+g+k _
lim — ==y "=
N— oo HCx N —> 0 Cn

So, as N — oo, the left side of (2.5) converges to a strictly positive number.
Thus, (2.3) follows, and (2.1) is proven.

The proof of (2.2) requires some extra details, but the ideas are
similar. In addition to the above definitions, there exist m’ >myg, with
my+n'<m’, and a SAW w® in S, such that R occurs at the tail of @*,

?

ofe{xez®1<xY,i=1,.,d} for j=my,.., m
wfe{xez*x"=0} for j=0,.,my—1
and wf=0. Let D’ be the cube {xeZ%“0<xV<m, i=1,. ,d} and let
(a)o s OF) be @ SAW that exactly fills D’ with o =0, w2’ another
extreme point of D’ and oo " exactly fills D' [and so ¢’ = (m’ + H?—1].
The roles of w®, D', and w® will be exactly analogous to the roles of w”,
D, and o®.
We also need the SAW &% =(dE,..., dR , |) obtained by “adding” a
single edge to w*, as follows. Let
. jof for i=0,.,myg—1
okf  +(1,0,0,.,0) for i=mg,..,m +1
It is not hard to see that @® is a SAW, and that it is contained in D’,

begins at 0, and has R as a tail pattern.
As in (2.4), there exist I’ and ¢’ >0 such that

w0, 0”)<[(1 =)yl forall izl (2.6)
Fix k> max{/, I'} such that k is even and

(1—ef<1/4 and (1—¢)<1/4 2.7)

Let vy, be the number of SAWs in S in which w? oceurs at none of the
first k steps and w® occurs at none of the last k steps. Then

k
z CiCn_j— J((U w® ) P ZCn— VN

n'[\/]»

= cn— xxl0, (UD) CN—k— CN—ka((), (UD")

>cy— 20y /4
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[using (2.4), (2.6), and (2.7)], and therefore

. HkCN k - -2
max cy_(w?, wD)ZcN<1— = )(Z c,)
j=0

0<r<2%k 2cy
Thus, (2.2) will be proven if it can be shown that, for all =0,
Cth(st ('OD,)< CNﬁq—q’+m+m’(P’ R) (28)

To prove (2.8), I will construct a one-to-one mapping from
Sy A0 0”10 Sy_, 4 msm(P, R). For t=0or 1, this is easy: given a
SAW in S, _ ,(w?, o®"), replace the front pattern w? by w® and replace the
tail pattern w® by w”® or ®*®, according to whether ¢is 0 or 1. For t > 2, let
! be the integer satisfying ¢=2/if ¢ is even and 1=2/+1if ¢ is odd. For a
SAW o in Sy_(0”, @), let u=min{i: 0"V >w{" for all j=0,., N—1}.
To define the mapping, consider three cases:

Case ! g<u<N—t—q'": Replace the edge from w, to w,, ; by the
(24 1)-step SAW from w, to w,+(/,0,0,...,0) to v, ,+(,0,0,..,0) to
w, . ;. Then replace the front pattern w® by w” and replace the tail pattern
o® by w® or &F, according to whether ¢ is even or odd.

Case Il u>N—1t—q: Replace w” by »” and replace w® by the
pattern consisting of the t-step SAW from (0, 0....,, 0) to (¢, 0,..., 0) followed
by w®

Case Ill: u<q: Similar to case II, but with the f-step segment
immediately following w”.

The above three cases define the desired one-to-one mapping, so (2.8)
is proven and (2.2) follows.

Theorem 2.2, Fix a point ze Z? with |z| = 1. Let P=(pg,.., p,) be
a front pattern and let R=(rg,..,r,) be a tail pattern such that
cplz; P, R) >0 for all sufficiently large (odd) N. Then

P, R
lim it ¥E LR (2.9)
Nods cnl2)

Proof. Without loss of generality, po=0 and r, =z Let P’ be the
pattern (rg,..., 7', Pos-es Py)- Lhen P’ can occur many times on long SAWs,
so, for some ¢ >0,

lim sup [y y(eN, PN < (2.10)

N - o



696 Madras

by (1.3) and (1.1). Let 71, be the set of we S,(z) such that P’ occurs at
least eN times on w; then (2.10), (1.1), and (1.2) imply |{Iy| = |ca(2)]/2 for
sufficiently large N.

If welly and P’ occurs at the jth step of w, then (®;;, .1,
@) 4 4 2500s Dy Dgyeney @4 ) 18 @ SAW if we translate this so that its initial
point is the origin, we obtain a SAW w* in Sy(z) N Sy(P, R). In words, w*
is obtained by adding the bond (@, w,) to w, forming an oriented self-
avoiding polygon, and then removing the (r,., po) edge from an occurrence
of P’ (followed by a translation). Given w*, there are at most N possible w
that it could have come from (the polygon is uniquely determined, but each
such oriented polygon could come from N+ 1 different SAWs with
|y — @] =1). Thus, each obtained w* € Sy(z) N Sp(P, R) comes from at
most N different w’s in I7,. Conversely, each we IT, gives rise to at least
eN different w*s in Sy(z) N Sy(P, R). Therefore, Ncy(z; P, R) = eN |11 |
Combining this with |IT,| = |cy(2)]/2 (for large N) proves (2.9).

Theorem 2.3. Fix a nonzero point ze Z% Let P=(py,., p,) be a
proper front pattern and let R=(r,,.., r,}) be a proper tail pattern such
that cy(z; P, R) >0 for all sufficiently large N (of the same parity as |z|).
Then, if |z| is odd,

P, R
fim inf XE 2R g (2.11)
N —= uN

N odd

and if |z] is even, (2.11) holds when N is replaced by N+ 1 in the
numerator.

Proof. To get a handle on the geometry, consider an arbitrary SAW
@ in Si(z) N Si(P, R) for some k. Let b be large enough so that |@,] <b for
all 0<i<n and N—n'<i<N. Let D be the cube {x:|x"|<b for all
i=1,.,d}. Then there exist two SAWs of=(wf,.,wf) and
of=(wf,..., X)) having no vertices in common, contained entirely in D,
having w? and wf as extreme points of D, and satisfying w/=ad, for
O0<i<mand wf=dy_, , for m"—n'<i<m'. We can also require that
0” = (0f,.., ) is a SAW with v =wf, v?=w’, and such that w”
exactly fills D (ref. 4, Lemma 3).

Put y=(1,0,.,0); let weSy(y)n Ty(@®). [If Sy(y)n Ty(w?) is
empty, put y=(—1,0,..,0) instead.] Define a SAW w* obtained from w
by removing the tail pattern w® and replacing it with w* at the tail and ©”
and (»,0) at the front; explicitly, o*=(wf,..,wr, wq+ (0L —y),.,
oy, +(0h =), of,.., wk). Then it is easy to see that w* is an M step
SAW, where M=M(N)=N—qg+m+m +1, and that w*eSy,(z)n
S/(P, R). (Therefore, M has the same parity as |z|.) Since the transfor-
mation from ® to w* is one-to-one, it follows that |Sy(y) N Ty(w?)| <
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cx(z; P, R). So, when |z] is odd, this inequality combines with Theorem 2.2
and (1.6) to give

P, R
fim inf 25 PR o
m— uM N—

S T (w”®
(l M) Ty(w )ig_/v_>>0
2dep(y) Upr
The case where |z| is even is exactly analogous.

Corollary 2.4. Fix y, zeZ? with |y|=1. Then there exists a
constant 4 = A(z) such that for all sufficiently large odd N,

en(y) < Adey(z) if |z|isodd
ep(y) < dey o 1{2) if |z|iseven

We remark that if the reverse inequalities also hold (for different 4),
then Theorem 2.2 holds for every fixed z.

3. RATIO LIMIT THEOREMS

In this section I prove a theorem which extends the known results
(1.5) and (1.6). (The rates in the theorem are exactly the same as those in
ref. 4.)

Theorem 3.1. (i) Let P=(pg,.., p,) be a proper front pattern, and
let R=(rq,.., ) be a proper tail pattern. Then there exist constants 4, and
A, (depending on P and R) such that

CN+2(P) 2 —1
A <A N 1
T S (3.1)
and
CN+2(P>R) 2 —1/3
_— <A,NY 32
cv(P, R) U 2 (3.2)

for all sufficiently large N.

(ii) In addition to the above hypotheses, fix a nonzero zeZ% If
cylz; P, R)>0 for all sufficiently large N (of the same parity as |z|), then
there exist constants 45, A,, A5, and A4 (depending on z, P, and R) such
that

cn+a(z; P)

— —3g — <A NV 33

AsN ez P) H 4 (3.3)
c (z; P, R) _

AN BN 0 2 4 N 34

5 cx(z P, R) 2 6 (3.4)

for all sufficiently large N (of the same parity as |z|).
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Remark. (3.1) is a consequence of (3.2), since

cn2(P) 2l (CN+2(P9 R)_ 2) cy(P, R)
cn(P) % cx{P, R) cn(P) \
CN+2(P5 R) 2
SURO eP, R

where R ranges over all n'-step proper tail patterns and N is large.
Similarly, (3.3) follows from (3.4).

Before 1 prove (3.2) and (3.4), I prove two lemmas which generalize
the inequality

Carvn = (1/2d) cynp (3.5)
which is Lemma 1 of ref. 4.

Lemma 3.2. For P and R as in Theorem 3.1(i), there exists a
constant ¢ = J(P, R)> 0 such that

Cny Py R)Z0cyn g = 0cy(P, R) 1y, (3.6)
CN+M(P,R)<5_1CN(P, R)cy, (3.7)

for sufficiently large N and all M.

Proof. (3.6) follows from (3.5) and Theorem 2.1 if we put
0=1/21liminfy , o cy(P, R)/cy. (3.7) follows from the inequalities

cy+m(P, R) <CN+M<CNCM<5‘ICN(P> R) ¢y

Lemma 3.3. For P, R, and z as in Theorem 3.1(ii),
Cnvm(z Py R) 2 (1/2d) ep(z; P, R) 1y, (3.8)

for all M and sufficiently large N (of correct parity).

Proof. Choose A4 large enough so that for any w € Sy(z) 0 S(P, R),
one has

w;e{xeZ%|xP <4,i=1,.,d}

for all 0<j<n and N—n'<j< N (that is, the end patterns must be con-
tained in the above cube). Now, given we Sy(z)nSy(P, R) for some
N> (24 +1)% choose the integer ¢ so that o{!=¢ for some ie {1,..,d}
and some j € {0,.., N}, and so that |¢| is as large as possible. (Observe that
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since N > (24 + 1), we must have |¢| > 4 and n < j < N—n'".) Let k, be the
subscript of the lexicographically largest point of w in the hyperplane
x'V = ¢ Now proceed as in the proof of Lemma 1 of ref. 4, attaching an M-
step self-avoiding polygon to w at w,, (the points of the polygon are all on
the side of the hyperplane x'?=¢ that contains no points of ). The
resulting SAW, w*, is in Sy, ,(z) " Sy, (P, R). Every (N + M)-step w*
obtained in this way is different, because there can be only one cube
centered at the origin which contains exactly N+ 1 points of o* (those
N +1 points give we Sy, and the remaining M points give the polygon).
Since the polygon can be chosen in at least #,,/2d ways, and ® in
cplz; P, R) ways, (3.8) is proven.

I now return to the proof of (3.2) and (3.4). Much of the proof is the
same as the proofs of (1.5) and (1.1) in ref. 4. Instead of reproducing the
details, I refer the reader to ref. 4 and restrict myself here to describing the
changes that must be made.

Proof of Theorem 3.1. Define ¢}, =¢L(P, R)=cn (P, R)/c (P, R)
and @2 =¢%(z; P, R)=cpn,(z; P, R)/cy(z; P, R). First we require the
following result: There exist constants B, and B, such that

$hi2Z 0k — BN (39)

This is the exact analog of Theorem 2 of ref. 4. The proof is essentially iden-
tical; we must, however, prohibit any changes affecting the end patterns P
and R (see Kesten’s remark at the end of ref. 4, Section 3). Everything else
in the proof is the same, until the final line, where we require
liminfy , , ¢4>0. For j=1, ¢L=[cn, 2P, R)/cyi2] Cnra/cy, sO the
result follows from Theorem 2.1 and (1.5); for j = 2, the result follows from
(3.8) because n,=4d.

Now I proceed to Theorem 4 of ref. 4. Define pf by ¢} =pu*+
piN~'3. The upper bound on pl, uses (3.7) (for large N) instead of
Eq. (3.10) of ref. 4: the § ~! constant is unimportant (it can be absorbed, for
example, by increasing o).

For the upper bound on p%, I use cy(z) > Ku, for some constant K
(from Corollary 2.4), as well as (3.5) and (1.1) of ref. 4:

Cry2mlZ; P>R)<CN+2M
ez P, R)  Kuy

1
SE,uZM explo (N +2M) 2] explay N + 1)72]

<M exp[a(N +2M)V?]
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for an appropriate «>0. Then Kesten’s argument, with m=
[(p%/2B,) N**], gives

NP3 log[ 1+ (p3/24°) N™ "1 < 2B,aN =" [ 1 + (p3/2B,) N~ 1112

from which we deduce p3, N~ =Q(N /%)

The proof of the lower bound for pj is the same as Kesten’s, except
that ¢ y/Cp_ am: 2 Nam/2d 1s replaced by cy(P, R/ ey _ 5, (P, R) 2 éy,, [from
(3.6)] for j=1, and the analogous result from (3.8) for j=2.

4. AN EXAMPLE

As an application, I discuss the nonergodicity of the “reptation”
Monte Carlo algorithm for SAWs (see references in ref. 6, Section 3). Also
known as the “slithering snake,” this algorithm starts with a (given) SAW
'™ in S, and generates a random sequence of SAWs w'), w3, . in S,
(here, each element of S, should be viewed as an equivalence class of
SAWs modulo translation). Given @'], the algorithm randomly adds one
step to one end of the SAW and simultaneously deletes a step from the
other end; if the result is a SAW, then it is w!*1) (if it is not a SAW, we

R

Fig. 1. An example of a proper front pattern P and a proper tail pattern R.
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put o =gl Two SAWs w? and w? are said to be in the same
ergodic class if the algorithm can transform w* into w?: i.e., if there exists a
finite sequence w?=w®), v, ., 0™ =w? of SAWs which is a possible
realization of the algorithm. The SAW o is said to be frozen if it is the
only SAW in its ergodic class.

The purpose of such a Monte Carlo algorithm is to generate a
representative sample of all SAWs of fixed length, so the degree to which
this can be done can be partly measured by dy, the size of the largest
ergodic class, relative to cy. In Z?, consider the patterns P and R shown in
Fig. 1. These are proper end patterns, but each is a “cul de sac™: no step
can be added to either end of a SAW in Sp(P, R), so every SAW in
Sy(P, R) is frozen. Therefore, Theorem 2.1 implies that for some ¢ >0 and
for sufficiently large N, one has dy < (1 —¢) cy. It is known® that a lower
bound on dy is ¢}, so if one assumes the scaling relation ¢y~ u"N" 7},
then

ON"=Uygdyjen<1 —¢ (4.1)

for large N. This would hold for all dimensions d > 2, since a cul de sac can
be constructed in any dimension. It would be most interesting to know
which inequality in (4.1) is sharp (if either).
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